Go 中一个非典型不加锁读写变量案例分析

前段时间在 v2 看到一个关于并发读写变量的问题:go 一个线程写, 另外一个线程读, 为什么不能保证最终一致性。帖子中给出的例子非常简单(稍作修改)main.go

package main

import (
    "fmt"
    "runtime"
    "time"
)

var i = 0

func main() {
    runtime.GOMAXPROCS(2)
    go func() {
        for {
            fmt.Println("i am here", i)
            time.Sleep(time.Second)
        }
    }()
    for {
        i += 1
    }
}

既然是问题贴,直接运行的结果应该是出乎大多数人预料的:

╰─➤  go run main.go                                                                                                                                     1 ↵
i am here 0
i am here 0
i am here 0
i am here 0
i am here 0
i am here 0
...

帖子的回复比较多,涉及的信息量相对杂乱,爬完楼反而感觉没有看懂。这里就不卖关子,直接给出脱水后的结论:出现上面结果的原因是 go 的编译器把代码 i 自加 1 的 for 循环优化掉了。要验证这一点也很简单,我们使用 go tool objdump -s 'main\.main' main 查看编译出的二进制可执行文件的汇编代码:

╰─➤  go tool objdump -s 'main\.main' main
TEXT main.main(SB) /Users/liudanking/code/golang/gopath/src/test/main.go
  main.go:11        0x108de60       65488b0c25a0080000  MOVQ GS:0x8a0, CX
  main.go:11        0x108de69       483b6110        CMPQ 0x10(CX), SP
  main.go:11        0x108de6d       7635            JBE 0x108dea4
  main.go:11        0x108de6f       4883ec18        SUBQ $0x18, SP
  main.go:11        0x108de73       48896c2410      MOVQ BP, 0x10(SP)
  main.go:11        0x108de78       488d6c2410      LEAQ 0x10(SP), BP
  main.go:12        0x108de7d       48c7042402000000    MOVQ $0x2, 0(SP)
  main.go:12        0x108de85       e8366bf7ff      CALL runtime.GOMAXPROCS(SB)
  main.go:13        0x108de8a       c7042400000000      MOVL $0x0, 0(SP)
  main.go:13        0x108de91       488d05187f0300      LEAQ go.func.*+115(SB), AX
  main.go:13        0x108de98       4889442408      MOVQ AX, 0x8(SP)
  main.go:13        0x108de9d       e8fe13faff      CALL runtime.newproc(SB)
  main.go:20        0x108dea2       ebfe            JMP 0x108dea2
  main.go:11        0x108dea4       e8c7dffbff      CALL runtime.morestack_noctxt(SB)
  main.go:11        0x108dea9       ebb5            JMP main.main(SB)
  :-1           0x108deab       cc          INT $0x3
  :-1           0x108deac       cc          INT $0x3
  :-1           0x108dead       cc          INT $0x3
  :-1           0x108deae       cc          INT $0x3
  :-1           0x108deaf       cc          INT $0x3

TEXT main.main.func1(SB) /Users/liudanking/code/golang/gopath/src/test/main.go
  main.go:13        0x108deb0       65488b0c25a0080000  MOVQ GS:0x8a0, CX
  main.go:13        0x108deb9       483b6110        CMPQ 0x10(CX), SP
  main.go:13        0x108debd       0f8695000000        JBE 0x108df58
  main.go:13        0x108dec3       4883ec58        SUBQ $0x58, SP
  main.go:13        0x108dec7       48896c2450      MOVQ BP, 0x50(SP)
  main.go:13        0x108decc       488d6c2450      LEAQ 0x50(SP), BP
  main.go:15        0x108ded1       0f57c0          XORPS X0, X0
  main.go:15        0x108ded4       0f11442430      MOVUPS X0, 0x30(SP)
  main.go:15        0x108ded9       0f11442440      MOVUPS X0, 0x40(SP)
  main.go:15        0x108dede       488d059b020100      LEAQ runtime.types+65664(SB), AX
  main.go:15        0x108dee5       4889442430      MOVQ AX, 0x30(SP)
  main.go:15        0x108deea       488d0d0f2d0400      LEAQ main.statictmp_0(SB), CX
  main.go:15        0x108def1       48894c2438      MOVQ CX, 0x38(SP)
  main.go:15        0x108def6       488d1583fb0000      LEAQ runtime.types+63872(SB), DX
  main.go:15        0x108defd       48891424        MOVQ DX, 0(SP)
  main.go:15        0x108df01       488d1d107c0c00      LEAQ main.i(SB), BX
  main.go:15        0x108df08       48895c2408      MOVQ BX, 0x8(SP)
  main.go:15        0x108df0d       e84eddf7ff      CALL runtime.convT2E64(SB)
  main.go:15        0x108df12       488b442410      MOVQ 0x10(SP), AX
  main.go:15        0x108df17       488b4c2418      MOVQ 0x18(SP), CX
  main.go:15        0x108df1c       4889442440      MOVQ AX, 0x40(SP)
  main.go:15        0x108df21       48894c2448      MOVQ CX, 0x48(SP)
  main.go:15        0x108df26       488d442430      LEAQ 0x30(SP), AX
  main.go:15        0x108df2b       48890424        MOVQ AX, 0(SP)
  main.go:15        0x108df2f       48c744240802000000  MOVQ $0x2, 0x8(SP)
  main.go:15        0x108df38       48c744241002000000  MOVQ $0x2, 0x10(SP)
  main.go:15        0x108df41       e85a9dffff      CALL fmt.Println(SB)
  main.go:16        0x108df46       48c7042400ca9a3b    MOVQ $0x3b9aca00, 0(SP)
  main.go:16        0x108df4e       e87d27fbff      CALL time.Sleep(SB)
  main.go:15        0x108df53       e979ffffff      JMP 0x108ded1
  main.go:13        0x108df58       e813dffbff      CALL runtime.morestack_noctxt(SB)
  main.go:13        0x108df5d       e94effffff      JMP main.main.func1(SB)
  :-1           0x108df62       cc          INT $0x3
  :-1           0x108df63       cc          INT $0x3
  :-1           0x108df64       cc          INT $0x3
  :-1           0x108df65       cc          INT $0x3
  :-1           0x108df66       cc          INT $0x3
  :-1           0x108df67       cc          INT $0x3
  :-1           0x108df68       cc          INT $0x3
  :-1           0x108df69       cc          INT $0x3
  :-1           0x108df6a       cc          INT $0x3
  :-1           0x108df6b       cc          INT $0x3
  :-1           0x108df6c       cc          INT $0x3
  :-1           0x108df6d       cc          INT $0x3
  :-1           0x108df6e       cc          INT $0x3
  :-1           0x108df6f       cc          INT $0x3

显然,

    for {
        i += 1
    }

直接被优化没了。我们可以在语句 i += 1 添加一个其他语句来避免被优化掉:

    for {
        i += 1
        time.Sleep(time.Nanosecond)
    }

重新运行程序,运行结果“看似正确”了:

╰─➤  go run main.go                                                                                                                                     1 ↵
i am here 30
i am here 1806937
i am here 3853635
i am here 5485251
...

显然,如此修改之后,这段代码并非真正正确。因为变量 i 存在并发读写,即 data race 的问题。而 data race 场景下,go 的行为是未知的。程序员最讨厌的几件事中,不确定性必居其一。因此,一步小心写出 data race 的bug,调试起来是不太开心的。这里的例子因为只有几行代码,我们可以目测定位问题。如果代码规模比较大,我们可以借助 golang 工具链中的 -race 参数来排查该类问题:

╰─➤  go run -race main.go                                                                                                                               2 ↵
==================
WARNING: DATA RACE
Read at 0x0000011d4318 by goroutine 6:
  runtime.convT2E64()
      /usr/local/go/src/runtime/iface.go:335 +0x0
  main.main.func1()
      /Users/liudanking/code/golang/gopath/src/test/main.go:15 +0x7d

Previous write at 0x0000011d4318 by main goroutine:
  main.main()
      /Users/liudanking/code/golang/gopath/src/test/main.go:20 +0x7f

Goroutine 6 (running) created at:
  main.main()
      /Users/liudanking/code/golang/gopath/src/test/main.go:13 +0x53
==================
i am here 1
i am here 558324
i am here 1075838

除了在 go run 上可以使用 -trace, 其他几个常用的golang工具链指令也支持这个参数:

$ go test -race mypkg    // to test the package
$ go run -race mysrc.go  // to run the source file
$ go build -race mycmd   // to build the command
$ go install -race mypkg // to install the package

需要说明的是, -trace 并不保证能够检查出程序中所有的 data race, 而检查出 data race 则必然存在。说起来比较绕,大家记住它跟布隆过滤器 (Bloom Filter) 的真值表是一样的就对了。

而要把最开始提到的代码改对,方法有很多,我们可以使用 The Go Memory Model 推荐的 sync 包中的读写锁即可:

package main

import (
    "fmt"
    "runtime"
    "sync"
    "time"
)

var i = 0

func main() {
    runtime.GOMAXPROCS(2)
    mtx := sync.RWMutex{}
    go func() {
        for {
            mtx.RLock()
            fmt.Println("i am here", i)
            mtx.RUnlock()
            time.Sleep(time.Second)
        }
    }()
    for {
        mtx.Lock()
        i += 1
        mtx.Unlock()
        time.Sleep(time.Nanosecond)
    }

扩展阅读

QUIC 存在 UDP 反射 DDoS 攻击漏洞吗?

今年年初,360信息安全部发布了一篇关于利用 UDP 反射 DDoS 的分析报告:Memcache UDP反射放大攻击技术分析。报告一出,引起了业界的普遍关注。根据文中所述,光是Qrator Labs 在 medium.com 上 批露的一次DDoS攻击看,其攻击流量峰值达到 480Gbps。而360信息安全团队本身也监测和确认有更大的攻击已经实际发生,只是未被公开报道。

而就在这个这个事件纰漏没多久,我把博客升级为支持基于 UDP 的 QUIC 协议来改善小站的访问体验:本站开启支持 QUIC 的方法与配置。本着小站没几人访问的蜜汁自信,当时也没太纠结 QUIC 是否也存在 UDP 反射漏洞。前几天,看到著名博主,阮一峰同学网站被 DDoS 攻击,心里咯噔一下:出来混迟早是要还的,还是填坑为安吧。

什么是 UDP 反射 DDoS 攻击

简单讲,就是攻击者利用IP网络不做真实源地址检查的“设计缺陷“,向提供基于 UDP 服务的服务器发送伪造源地址(一般为被攻击者的主机IP)的 UDP 报文请求,使得这些 UDP 报文的响应数据都会发送给被攻击者主机,这种攻击我们称之为 UDP 反射 DDoS 攻击。

之所以要通过被利用的服务器反射流量到被攻击的服务器,是因为被利用的服务器一般存在流量放大效应。即一个伪造IP的 UDP 请求发送到到被利用服务器后,被利用服务器会发送比请求更多的数据到被攻击者服务器。

被利用服务器输出流量与输入流量的比值我们称之为放大系数。这个系数与被利用服务器所提供的 UDP 服务有关。之前提到的利用 Memcache 漏洞的 DRDoS 攻击,可以获得稳定的 60000 倍放大系数。而我们日常使用的 DNS 则可以轻松的获得 50 倍的放大系数。

由放大系数反推,我们可以知道,如果一个 UDP 服务被利用以后,放大系数小于等于1的话,则不存在利用价值,因为这个时候,只从带宽流量方面考虑的话,还不如直接利用攻击主机对被攻击服务器进行攻击效率高。

QUIC 存在 UDP 反射攻击漏洞吗

按照蛤乎惯例,照顾猴急的同学,先给结论:可以。

QUIC 主要通过以下机制来解决该问题:

  1. 对于首次发起建立 QUIC 连接的客户端,服务端要求其初始化的 hello 数据包必须完全填充。这个包在 IPv4 下一般是 1370 字节,在 IPv6 下是 1350 字节。在 QUIC 协议中,服务器和客户端数据交互的基本单位是就是 UDP 数据包,而一个全填充的数据包已经达到了数据包大小的上限,因此服务器的响应数据包一定是小于等于这个 hello 数据包的。显然,放大系数小于等于1. 因此,新连接的建立没有反射利用的价值。
  2. 建立 QUIC 连接后,客户端发出的数据包就不会全填充了。这个时候,如果被 UDP 反射利用,放大系数是大于1的。因此, QUIC 引入了源地址token (source address token):在成功建立 QUIC 连接后,服务器会用发放一个源地址token给客户端,并要求客户端在后续的数据包中带上这个token;服务器只对源地址token有效的数据包进行处理。源地址token中一般包含客户端的源地址和服务器的时间。因此这是一个客户端证明其IP所有权的凭证。
  3. 由于源地址token可能会被网络中的攻击者嗅探收集,因此 QUIC 设计了一套源地址token的过期和刷新机制。另一方面,每次客户端发送的数据包如果都带上源地址token的话,不仅客户端流量大,服务器验证token也是额外的开销,使得协议延迟变高。因此 QUIC 协议允许客户端按照一个动态策略选择是否在数据包中夹带源地址token:服务器端收集和统计源地址的数据包,当统计到源地址数据包交互响应异常的数量超过阈值时,要求该源地址的客户端必须夹带源地址token, 对于无法提供合法源地址的token的请求进行 reject 处理。

扩展阅读

魔鬼在细节中:Base64 你可能不知道的几个细节

Base64 是我们常用的编码方式,广泛用于邮件编码、数据签名/数据校验编码以及HTML/XML复杂数据编码。这本来是一个花两分钟了解一下就无需关注的技术,但是最近线上遇到一个相关问题。于是重新梳理了一下 Base64, 发现了一些以前未曾注意到的细节,记录如下,希望对你也有帮助。

Base64 是什么?

Base64 是一种将二进制数据表示为可打印字符的编码方法。基本操作是将3个字节编码为4个 Base64 单元:3 * 8 bit = 4 * 6 bit. 这种编码方法常用于处理文本数据的场合,例如在 HTML/XML 中表示、传输、存储一些二进制数据(如数据签名、数据校验等)。Base64 编码后数据增长为原来的 4/3 ≈ 1.33 倍。相较于将二进制数据按照十六进制输出数据增长为原来2倍,Base64 更加节省空间。Base64 的标准是 RFC 4648,如果你不想直接阅读这个拗口啰嗦的RFC,可以继续往下看。

Base64 不是什么?

Base64 不是一种加密方式,因此它不提供任何安全特性。我们在论坛、个人博客中发现很多人使用 Base64 编码显示自己邮箱主要是避免被搜索引擎及其他批量化工具发现和索引。

Base64 编码结果是唯一的吗?

不是的。Base64 根据编码字典表不同以及是否 padding (使用=作为 padding 字符),对同一数据的编码结果可能不同。使用最多的字典表有两个:

                      Table 1: The Base 64 Alphabet

     Value Encoding  Value Encoding  Value Encoding  Value Encoding
         0 A            17 R            34 i            51 z
         1 B            18 S            35 j            52 0
         2 C            19 T            36 k            53 1
         3 D            20 U            37 l            54 2
         4 E            21 V            38 m            55 3
         5 F            22 W            39 n            56 4
         6 G            23 X            40 o            57 5
         7 H            24 Y            41 p            58 6
         8 I            25 Z            42 q            59 7
         9 J            26 a            43 r            60 8
        10 K            27 b            44 s            61 9
        11 L            28 c            45 t            62 +
        12 M            29 d            46 u            63 /
        13 N            30 e            47 v
        14 O            31 f            48 w         (pad) =
        15 P            32 g            49 x
        16 Q            33 h            50 y

         Table 2: The "URL and Filename safe" Base 64 Alphabet

     Value Encoding  Value Encoding  Value Encoding  Value Encoding
         0 A            17 R            34 i            51 z
         1 B            18 S            35 j            52 0
         2 C            19 T            36 k            53 1
         3 D            20 U            37 l            54 2
         4 E            21 V            38 m            55 3
         5 F            22 W            39 n            56 4
         6 G            23 X            40 o            57 5
         7 H            24 Y            41 p            58 6
         8 I            25 Z            42 q            59 7
         9 J            26 a            43 r            60 8
        10 K            27 b            44 s            61 9
        11 L            28 c            45 t            62 - (minus)
        12 M            29 d            46 u            63 _
        13 N            30 e            47 v           (underline)
        14 O            31 f            48 w
        15 P            32 g            49 x
        16 Q            33 h            50 y         (pad) =

这两个字典表的区别主要是 6263 使用的字符不同(我们将这两个字符称为特殊字符)。因此,对于同一数据最多可能有 2 * 2 = 4 种编码结果。以 0x0F0xF1(2 bytes)为例,有以下4种编码结果:

  • 字典表1 + padding: D/E=
  • 字典表1 + nopadding: D/E
  • 字典表2 + padding: D_E=
  • 字典表2 + nopadding: D_E

这种一个数据有多个编码结果的情况,往往会给我们解码带来困扰。因此,在使用 Base64 的场景中,务必在文档中注明你是使用的哪一个字典表以及是否需要 padding. 当然,国内环境对文档普遍不够重视,在这么小的技术点上写如此细致是不敢奢望的,有一条有用的经验是:在没有特殊说明的情况下,技术文档中的 Base64 一般是指 字典表1 + padding.

Base64 是 url/filename safe 的吗?

如上所诉,我们默认的 Base64 编码使用的是字典表1,而这个字典表中的字符 +/ 无论是在url还是文件系统中都是特殊字符。因此,基于字典表1的Base64编码不是 url/filename safe 的,不能将该 Base64 编码直接与url拼接或用来命名文件。基于字典表2的 Base64 编码是 url/filename safe 的。但它不是我们大部分编程语言的默认字典,因此,你如果选择这个字典进行 Base64 编码,在解码时也选择该字典。否则你有很大概率会遇到部分数据能解码,部分数据不能解码的问题。

Base64 可以自定义特殊字符吗?

字典表2使用了不一样的 6263 特殊字符以实现 url/filename safe. 但这可能无法满足所有应用场景。因此根据 RFC, 你是可以自定义这两个特殊字符建立自己的字典表的。有一点需要注意,如果你使用了自定义字典表,那么请确保自己编码和解码使用的字典表是一致的。

Base64 编码结果中的等号(=)可以省略吗?是多余的设计吗?

可以省略,但不是多余的设计。

我们先看为何可以省略:

对于数据 A, 如果我们省略padding的等号,解码的时候我们从QQ是可以推断出来,原始数据长度必然是1 byte, 因此可以可以正确解码。数据 BC 同理。

既然 padding 的等号完全不影响解码,是否可以取消这个设计呢?答案是否定的。对于一些将多个Base64编码拼接在一起的场景,padding的等号可以标记一个 Base64 编码单元的边界,使得拼接后的 Base64 编码整体是可以无歧义正确解码的。如果省略等号,则无法保证无歧义性。我们看一个例子:

  • I Base64编码为 SQ (SQ== with padding)
  • AM Base64编码为 QU0 (QU0= with padding)
  • Daniel Base64编码为 RGFuaWVs (RGFuaWVs with padding)

如果使用省略等号的方式,拼接后的Base64编码是 SQQU0RGFuaWVs, 因为我们无法区分边界,我们只能对整个字符串进行解码,显然解码结果是不正确的。如果我们不省略等号,则拼接后的编码 SQ==QU0=RGFuaWVs 可以根据等号区分边界,然后分块正确解码。

扩展阅读