Java HTTP 组件库选型看这篇就够了

Java HTTP 组件库选型看这篇就够了

最近项目需要使用 Java 重度调用 HTTP API 接口,于是想着封装一个团队公用的 HTTP client lib. 这个库需要支持以下特性:

  1. 连接池管理,包括连接创建和超时、空闲连接数控制、每个 host 的连接数配置等。基本上,我们想要一个 go HTTP 标准库自带的连接池管理功能。
  2. 域名解析控制。因为调用量会比较大,因此希望在域名解析这一层做一个调用端可控的负载均衡,同时可以对每个服务器 IP 进行失败率统计和健康度检查。
  3. Form/JSON 调用支持良好。
  4. 支持同步和异步调用。

在 Java 生态中,虽然有数不清的 HTTP client lib 组件库,但是大体可以分为这三类:

  1. JDK 自带的 HttpURLConnection 标准库;
  2. Apache HttpComponents HttpClient, 以及基于该库的 wrapper, 如 Unirest.
  3. 非基于 Apache HttpComponents HttpClient, 大量重写应用层代码的 HTTP client 组件库,典型代表是 OkHttp.

HttpURLConnection

使用 HttpURLConnection 发起 HTTP 请求最大的优点是不需要引入额外的依赖,但是使用起来非常繁琐,也缺乏连接池管理、域名机械控制等特性支持。以发起一个 HTTP POST 请求为例:

可以看到,使用 HttpURLConnection 发起 HTTP 请求是比较原始(low level)的,基本上你可以理解为它就是对网络栈传输层(HTTP 一般为 TCP,HTTP over QUIC 是 UDP)进行了一次浅层次的封装,操作原语就是在打开的连接上面写请求 request 与读响应 response. 而且 HttpURLConnection 无法支持 HTTP/2. 显然,官方是知道这些问题的,因此在 Java 9 中,官方在标准库中引入了一个 high level、支持 HTTP/2 的 HttpClient. 这个库的接口封装就非常主流到位了,发起一个简单的 POST 请求:

封装的最大特点是链式调用非常顺滑,支持连接管理等特性。但是这个库只能在 Java 9 及以后的版本使用,Java 9 和 Java 10 并不是 LTS 维护版本,而接下来的 Java 11 LTS 要在2018.09.25发布,应用到线上还需要等待一段时间。因此,虽然挺喜欢这个自带标准库(毕竟可以不引入三方依赖),但当前是无法在生产环境使用的。

Apache HttpComponents HttpClient

Apache HttpComponents HttpClient 的前身是 Apache Commons HttpClient, 但是 Apache Commons HttpClient 已经停止开发,如果你还在使用它,请切换到 Apache HttpComponents HttpClient 上来。

Apache HttpComponents HttpClient 支持的特性非常丰富,完全覆盖我们的需求,使用起来也非常顺手:

对 Client 细致的配置和自定义支持也是非常到位的:

完整示例请参考 ClientConfiguration.

基本上,在 Java 原生标准库不给力的情况下,Apache HttpComponents HttpClient 是最佳的 HTTP Client library 选择。但这个库当前还不支持 HTTP/2,支持 HTTP/2 的版本还处于 beta 阶段(2018.09.23),因此并不适合用于 Android APP 中使用。

OkHttp

由于当前 Apache HttpComponents HttpClient 版本并不支持 HTTP/2, 而 HTTP/2 对于移动客户端而言,无论是从握手延迟、响应延迟,还是资源开销看都有相当吸引力。因此这就给了高层次封装且支持 HTTP/2 的 http client lib 足够的生存空间。其中最典型的要数OkHttp.

OkHttp 接口设计友好,支持 HTTP/2,并且在弱网和无网环境下有自动检测和恢复机制,因此,是当前 Android APP 开发中使用最广泛的 HTTP clilent lib 之一。

另一方面,OkHttp 提供的接口与 Java 9 中 HttpClint 接口比较类似 (严格讲,应该是 Java 9 借鉴了 OkHttp 等开源库的接口设计?),因此,对于喜欢减少依赖,钟情于原生标准库的开发者来说,在 Java 11 中,从 OkHttp 切换到标准库是相对容易的。因此,以 OkHttp 为代表的 http 库以后的使用场景可能会被蚕食一部分。

小结

  • HttpURLConnection 封装层次太低,并且支持特性太少,不建议在项目中使用。除非你的确不想引入第三方 HTTP 依赖(如减少包大小、目标环境不提供三方库支持等)。
  • Java 9 中引入的 HttpClient,封装层次和支持特性都不错。但是因为 Java 版本的原因,应用场景还十分有限,建议观望一段时间再考虑在线上使用。
  • 如果你不需要 HTTP/2特性,Apache HttpComponents HttpClient 是你的最佳选择,比如在服务器之间的 HTTP 调用。否则,请使用 OkHttp, 如 Android 开发。

扩展阅读

Go 中如何准确地判断和识别各种网络错误

Go 自带的网络标准库可能让很多第一次使用它的人感慨,这个库让网络编程的门槛低到了令人发指的地步。然而,封装层次与开发人员的可控性往往是矛盾的。Go 的网络库封装程度算是一个不错的折衷,绝大部分时候,我们只需要调用 Dial, Read, Write Close 几个基本操作就可以了。

但是,网络是复杂的。我们有时候需要细致的处理网络中的各种错误,根据不同的错误进行不同的处理。比如我们遇到一个网络错误时,需要区分这个错误是因为无法解析 host ip, 还是 TCP 无法建立连接,亦或是读写超时。一开始的时候,我们的写法可能是这样的:

    errString := err.Error()
    fmt.Println(errString)
    switch {
    case strings.Contains(errString, "timeout"):
        fmt.Println("Timeout")
    case strings.Contains(errString, "no such host"):
        fmt.Println("Unknown host")
    case strings.Contains(errString, "connection refused"):
        fmt.Println("Connection refused")
    default:
        fmt.Printf("Unknown error:%s", errString)
    }

这种根据错误信息进行字符串匹配进行判断的方法有非常明显的局限性:该错误信息依赖于操作系统,不同的操作系统对于同一错误返回的字符串信息可能是不同的。因此,这种判断网络错误类型的方法是不可靠的。那么有没有一种准确而可靠的判断各种网络错误的方式呢?答案是肯定的。

我们知道在 Go 中,error 是一个内建的 interface 类型:

type error interface {
        Error() string
}

要准确判断不同的错误类型,我们只需要类型断言出其错误类型即可。

在 Go 的网络标准库中,错误类型被统一封装为 net.Errorinterface 类型:

type Error interface {
        error
        Timeout() bool   // Is the error a timeout?
        Temporary() bool // Is the error temporary?
}

net.Error 类型的具体 concrete 类型又被封装为 net.OpError 类型:

type OpError struct {
        // Op is the operation which caused the error, such as
        // "dial", "read" or "write".
        Op string

        // Net is the network type on which this error occurred,
        // such as "tcp" or "udp6".
        Net string

        // For operations involving a remote network connection, like
        // Dial, Read, or Write, Source is the corresponding local
        // network address.
        Source Addr

        // Addr is the network address for which this error occurred.
        // For local operations, like Listen or SetDeadline, Addr is
        // the address of the local endpoint being manipulated.
        // For operations involving a remote network connection, like
        // Dial, Read, or Write, Addr is the remote address of that
        // connection.
        Addr Addr

        // Err is the error that occurred during the operation.
        Err error
}

其中,net.OpError.Err 可能是以下几种类型:

*os.SyscallError 错误比较特殊,与具体操作系统调用有关:

type SyscallError struct {
        Syscall string
        Err     error
}

对于我们关心的网络错误,SyscallError.Err 一般为 sys.Errno 类型,与网络错误相关的常用值有:

  • syscall.ECONNREFUSED
  • syscall.ETIMEDOUT

看到这里,你可能忍不住要吐槽 Go 这种错误嵌套处理了,事实上,官方也意识到了这种错误处理的问题,在 Go 2中,可能会出现新的错误和异常处理方式,可以参见 GopherChina 2018 keynote 点评: RETHINKING ERRORS FOR GO 2.

当前阶段,我们依然要直面这种错误处理方式。为了方便大家理解 Go 网络标准库中处理错误的方式,我们把上面的错误嵌套整理了一张关系图:

明白了网络标准库中处理错误的逻辑,判断和识别各种类型的网络错误就非常简单了:对网络错误进行类型断言。以我们团队主要关心的 DNS 解析错误、TCP 无法建立连接、读写超时为例,判断逻辑可以是这样:

func isCaredNetError(err error) bool {
    netErr, ok := err.(net.Error)
    if !ok {
        return false
    }

    if netErr.Timeout() {
        log.Println("timeout")
        return true
    }

    opErr, ok := netErr.(*net.OpError)
    if !ok {
        return false
    }

    switch t := opErr.Err.(type) {
    case *net.DNSError:
        log.Printf("net.DNSError:%+v", t)
        return true
    case *os.SyscallError:
        log.Printf("os.SyscallError:%+v", t)
        if errno, ok := t.Err.(syscall.Errno); ok {
            switch errno {
            case syscall.ECONNREFUSED:
                log.Println("connect refused")
                return true
            case syscall.ETIMEDOUT:
                log.Println("timeout")
                return true
            }
        }
    }

    return false
}

这种错误判定方式除了能解决最开始提到的可靠性和准确性问题,也具有良好的普适性。即基于 net 的其他标准库,如 net/http 也支持这种错误判断方式。

扩展阅读

Go 中一个非典型不加锁读写变量案例分析

前段时间在 v2 看到一个关于并发读写变量的问题:go 一个线程写, 另外一个线程读, 为什么不能保证最终一致性。帖子中给出的例子非常简单(稍作修改)main.go

package main

import (
    "fmt"
    "runtime"
    "time"
)

var i = 0

func main() {
    runtime.GOMAXPROCS(2)
    go func() {
        for {
            fmt.Println("i am here", i)
            time.Sleep(time.Second)
        }
    }()
    for {
        i += 1
    }
}

既然是问题贴,直接运行的结果应该是出乎大多数人预料的:

╰─➤  go run main.go                                                                                                                                     1 ↵
i am here 0
i am here 0
i am here 0
i am here 0
i am here 0
i am here 0
...

帖子的回复比较多,涉及的信息量相对杂乱,爬完楼反而感觉没有看懂。这里就不卖关子,直接给出脱水后的结论:出现上面结果的原因是 go 的编译器把代码 i 自加 1 的 for 循环优化掉了。要验证这一点也很简单,我们使用 go tool objdump -s 'main\.main' main 查看编译出的二进制可执行文件的汇编代码:

╰─➤  go tool objdump -s 'main\.main' main
TEXT main.main(SB) /Users/liudanking/code/golang/gopath/src/test/main.go
  main.go:11        0x108de60       65488b0c25a0080000  MOVQ GS:0x8a0, CX
  main.go:11        0x108de69       483b6110        CMPQ 0x10(CX), SP
  main.go:11        0x108de6d       7635            JBE 0x108dea4
  main.go:11        0x108de6f       4883ec18        SUBQ $0x18, SP
  main.go:11        0x108de73       48896c2410      MOVQ BP, 0x10(SP)
  main.go:11        0x108de78       488d6c2410      LEAQ 0x10(SP), BP
  main.go:12        0x108de7d       48c7042402000000    MOVQ $0x2, 0(SP)
  main.go:12        0x108de85       e8366bf7ff      CALL runtime.GOMAXPROCS(SB)
  main.go:13        0x108de8a       c7042400000000      MOVL $0x0, 0(SP)
  main.go:13        0x108de91       488d05187f0300      LEAQ go.func.*+115(SB), AX
  main.go:13        0x108de98       4889442408      MOVQ AX, 0x8(SP)
  main.go:13        0x108de9d       e8fe13faff      CALL runtime.newproc(SB)
  main.go:20        0x108dea2       ebfe            JMP 0x108dea2
  main.go:11        0x108dea4       e8c7dffbff      CALL runtime.morestack_noctxt(SB)
  main.go:11        0x108dea9       ebb5            JMP main.main(SB)
  :-1           0x108deab       cc          INT $0x3
  :-1           0x108deac       cc          INT $0x3
  :-1           0x108dead       cc          INT $0x3
  :-1           0x108deae       cc          INT $0x3
  :-1           0x108deaf       cc          INT $0x3

TEXT main.main.func1(SB) /Users/liudanking/code/golang/gopath/src/test/main.go
  main.go:13        0x108deb0       65488b0c25a0080000  MOVQ GS:0x8a0, CX
  main.go:13        0x108deb9       483b6110        CMPQ 0x10(CX), SP
  main.go:13        0x108debd       0f8695000000        JBE 0x108df58
  main.go:13        0x108dec3       4883ec58        SUBQ $0x58, SP
  main.go:13        0x108dec7       48896c2450      MOVQ BP, 0x50(SP)
  main.go:13        0x108decc       488d6c2450      LEAQ 0x50(SP), BP
  main.go:15        0x108ded1       0f57c0          XORPS X0, X0
  main.go:15        0x108ded4       0f11442430      MOVUPS X0, 0x30(SP)
  main.go:15        0x108ded9       0f11442440      MOVUPS X0, 0x40(SP)
  main.go:15        0x108dede       488d059b020100      LEAQ runtime.types+65664(SB), AX
  main.go:15        0x108dee5       4889442430      MOVQ AX, 0x30(SP)
  main.go:15        0x108deea       488d0d0f2d0400      LEAQ main.statictmp_0(SB), CX
  main.go:15        0x108def1       48894c2438      MOVQ CX, 0x38(SP)
  main.go:15        0x108def6       488d1583fb0000      LEAQ runtime.types+63872(SB), DX
  main.go:15        0x108defd       48891424        MOVQ DX, 0(SP)
  main.go:15        0x108df01       488d1d107c0c00      LEAQ main.i(SB), BX
  main.go:15        0x108df08       48895c2408      MOVQ BX, 0x8(SP)
  main.go:15        0x108df0d       e84eddf7ff      CALL runtime.convT2E64(SB)
  main.go:15        0x108df12       488b442410      MOVQ 0x10(SP), AX
  main.go:15        0x108df17       488b4c2418      MOVQ 0x18(SP), CX
  main.go:15        0x108df1c       4889442440      MOVQ AX, 0x40(SP)
  main.go:15        0x108df21       48894c2448      MOVQ CX, 0x48(SP)
  main.go:15        0x108df26       488d442430      LEAQ 0x30(SP), AX
  main.go:15        0x108df2b       48890424        MOVQ AX, 0(SP)
  main.go:15        0x108df2f       48c744240802000000  MOVQ $0x2, 0x8(SP)
  main.go:15        0x108df38       48c744241002000000  MOVQ $0x2, 0x10(SP)
  main.go:15        0x108df41       e85a9dffff      CALL fmt.Println(SB)
  main.go:16        0x108df46       48c7042400ca9a3b    MOVQ $0x3b9aca00, 0(SP)
  main.go:16        0x108df4e       e87d27fbff      CALL time.Sleep(SB)
  main.go:15        0x108df53       e979ffffff      JMP 0x108ded1
  main.go:13        0x108df58       e813dffbff      CALL runtime.morestack_noctxt(SB)
  main.go:13        0x108df5d       e94effffff      JMP main.main.func1(SB)
  :-1           0x108df62       cc          INT $0x3
  :-1           0x108df63       cc          INT $0x3
  :-1           0x108df64       cc          INT $0x3
  :-1           0x108df65       cc          INT $0x3
  :-1           0x108df66       cc          INT $0x3
  :-1           0x108df67       cc          INT $0x3
  :-1           0x108df68       cc          INT $0x3
  :-1           0x108df69       cc          INT $0x3
  :-1           0x108df6a       cc          INT $0x3
  :-1           0x108df6b       cc          INT $0x3
  :-1           0x108df6c       cc          INT $0x3
  :-1           0x108df6d       cc          INT $0x3
  :-1           0x108df6e       cc          INT $0x3
  :-1           0x108df6f       cc          INT $0x3

显然,

    for {
        i += 1
    }

直接被优化没了。我们可以在语句 i += 1 添加一个其他语句来避免被优化掉:

    for {
        i += 1
        time.Sleep(time.Nanosecond)
    }

重新运行程序,运行结果“看似正确”了:

╰─➤  go run main.go                                                                                                                                     1 ↵
i am here 30
i am here 1806937
i am here 3853635
i am here 5485251
...

显然,如此修改之后,这段代码并非真正正确。因为变量 i 存在并发读写,即 data race 的问题。而 data race 场景下,go 的行为是未知的。程序员最讨厌的几件事中,不确定性必居其一。因此,一步小心写出 data race 的bug,调试起来是不太开心的。这里的例子因为只有几行代码,我们可以目测定位问题。如果代码规模比较大,我们可以借助 golang 工具链中的 -race 参数来排查该类问题:

╰─➤  go run -race main.go                                                                                                                               2 ↵
==================
WARNING: DATA RACE
Read at 0x0000011d4318 by goroutine 6:
  runtime.convT2E64()
      /usr/local/go/src/runtime/iface.go:335 +0x0
  main.main.func1()
      /Users/liudanking/code/golang/gopath/src/test/main.go:15 +0x7d

Previous write at 0x0000011d4318 by main goroutine:
  main.main()
      /Users/liudanking/code/golang/gopath/src/test/main.go:20 +0x7f

Goroutine 6 (running) created at:
  main.main()
      /Users/liudanking/code/golang/gopath/src/test/main.go:13 +0x53
==================
i am here 1
i am here 558324
i am here 1075838

除了在 go run 上可以使用 -trace, 其他几个常用的golang工具链指令也支持这个参数:

$ go test -race mypkg    // to test the package
$ go run -race mysrc.go  // to run the source file
$ go build -race mycmd   // to build the command
$ go install -race mypkg // to install the package

需要说明的是, -trace 并不保证能够检查出程序中所有的 data race, 而检查出 data race 则必然存在。说起来比较绕,大家记住它跟布隆过滤器 (Bloom Filter) 的真值表是一样的就对了。

而要把最开始提到的代码改对,方法有很多,我们可以使用 The Go Memory Model 推荐的 sync 包中的读写锁即可:

package main

import (
    "fmt"
    "runtime"
    "sync"
    "time"
)

var i = 0

func main() {
    runtime.GOMAXPROCS(2)
    mtx := sync.RWMutex{}
    go func() {
        for {
            mtx.RLock()
            fmt.Println("i am here", i)
            mtx.RUnlock()
            time.Sleep(time.Second)
        }
    }()
    for {
        mtx.Lock()
        i += 1
        mtx.Unlock()
        time.Sleep(time.Nanosecond)
    }

扩展阅读